" />

HND Mechanical Modules (Edexcel)

HND in Mechanical Engineering Modules by distance learning – Course Contents

HND – Mechanical Engineering – Edexcel

It should also be said that each of these HN modules are stand alone courses and are all achievements in their own merit. They are also often used for CPD (continuous professional development) to assist career progression. They are more commonly used as part of the HNC / HND engineering framework award by Pearson Edexcel.

The Higher National Diploma (HND) in Mechanical Engineering (accredited by Edexcel) provides you with a programme of study over a range of disciplines to help you develop skills to progress your career through employment or further education at degree level.

The course is designed for learners who wish to work as technicians/technician engineers in electrical and electronics design, manufacture, maintenance, testing or fault finding. It has been developed in consultation with local industry, and combines theory and practical work with the focus being on industrial applications.

What you study

You study 16 units chosen to cover the range of needs of local and national industries and business.

The HND provides a sound understanding of all key principles including core modules in Mechanical Principles, Analytical Methods, Engineering Science and a project. Further specialist subjects may include Programmable Logic Controllers and Electronics

How you learn

You are provided with a self-contained comprehensive study pack for each of the modules. Each module consists of a folder or folders containing a series of lessons grouped into topics. Each lesson has an introduction, your aims, study advice, self-assessment questions and a summary.

It is important that you realise that open learning study requires a considerable degree of self-discipline. You must be prepared to devote both time and effort to studying not withstanding other distractions that may be present.

How you are assessed

Assessment is by a range of integrated assignments, case studies, and projects completion of these assessments is negotiated with your module tutor.

Professional accreditation

The HND programme is a nationally recognised qualification awarded under licence from Edexcel.

Career opportunities

Students who complete this course can usually progress to the 1st year of an appropriate degree at a UK University.

An HND award opens up the possibility of a career in a wide range of engineering disciplines including design, manufacturing, project management and IT. The qualification provides you with the opportunity to seek career development into senior positions in national and international companies.

Entry requirements

Applicants should normally have a SQA or BTEC National Certificate in a similar or related discipline or GCSE A level qualifications in mathematics or science. Relevant engineering experience will also be considered.

For mature students with appropriate work experience a ‘bridging’ programme in mathematics may be required.

The HNC in Mechanical Engineering (Edexcel) consists of 16 HN modules:

Core modules:

  • Analytical Methods for Engineers
  • Mechanical Principles
  • Engineering Science
  • Project

Optional modules:

  • Application of Pneumatics and Hydraulics
  • Business Management Techniques
  • Control Systems and Automation
  • Engineering Applications
  • Engineering Design
  • Engineering Thermodynamics
  • Fluid Mechanics
  • Heat Transfer and Combustion
  • Materials Engineering
  • Mechatronic Systems Principles
  • Plant Services
  • Programmable Logic Controllers
  • Safety Engineering

Modules offered may vary.

HND in Mechanical Engineering Brief Module Description:

Analytical Methods for Engineers

The primary aim of this module is to provide you with the fundamental analytical knowledge and techniques needed to successfully complete the core modules of Higher National Engineering programmes.

It is also intended as a base for the further study of analytical methods and mathematics, needed for more advanced option modules. The module is designed to enable you to use fundamental algebra, trigonometry, calculus, statistics and probability, for the analysis, modelling and solution of realistic engineering problems at Higher National level.

Mechanical Principles 

Engineering Science

The aim of this module is to investigate a number of major scientific principles which underpin the design and operation of engineering systems.

It is a broad-based unit, covering both mechanical and electrical principles. Its intention is to give you an overview which will provide you with the basis for further study in specialist areas of engineering.


This module develops your ability to use the knowledge and skills that you have developed at work and/or on the course to complete a realistic work project. It aims to integrate the skills and knowledge developed in other modules within a major piece of work that reflects the type of performance expected of a higher technician at work.

Application of Pneumatics and Hydraulics

The aim of this module is to extend students’ knowledge and understanding of fluid power systems in modern industry by investigating pneumatic and hydraulic diagrams, examining the characteristics of components and equipment, and evaluating the applications of pneumatics and hydraulics.

Business Management Techniques

This module develops your knowledge and understanding of the functions, structures and inter-relationships of an engineering business. It enables you to develop and apply the skills of costing, financial planning and control associated with engineered products or services.

The module also teaches you to appreciate the development of the fundamental concepts of project planning and scheduling that can be applied within an engineering organisation.

Control Systems and Automation

This module is intended to give students an insight into the principles of control engineering and how these principles can be used to model engineering systems and processes.

Engineering Applications


Engineering Design

The aim of this module is to give you an opportunity to experience the process of carrying out a design project. It will enable you to appreciate that design involves synthesising parameters which will affect the design solution.

Engineering Thermodynamics

The aim of this module is to introduce you to the principles and laws of thermodynamics and their application to engineering thermodynamic systems. It covers system definition, the first and second laws of thermodynamics, heat engine cycles, the measurement of engine performance and the layout and performance of steam plant.

Fluid Mechanics

 You investigate problems related to the storage of water in bulk and to its conveyance in known quantities through pipelines, rivers and open channels. You use your knowledge of the basic properties of water at rest and in motion for this, and consider the natural water cycle (hydrological cycle) and how humans have interacted with it to produce the hydrosocial cycle for our own use and benefit.

Rainfall is a major component of the hydrological cycle and the module provides an insight into rainfall types, rainfall losses and rainfall runoff. Water and wastewater treatment are also introduced, along with topics such as the hydrological cycle, rainfall, fluid statics, pipe flow and channel flow.

 Heat Transfer and Combustion

This module is intended to develop students’ knowledge of principles and empirical relationships to enable them to solve practical problems involving heat transfer, combustion and the specification of practical engineering equipment.

Materials Engineering

The aim of this module is to provide you with basic background knowledge and understanding of the properties, selection, processing and use of materials.

Mechatronic Systems Principles

Plant Services

Programmable Logic Controllers

Safety Engineering

This module covers the fundamentals of contemporary Safety Engineering as applied to industrial processes. It consists of an introduction to the terminology, the nature and treatment of hazards, hazard analysis, risk assessment, emergency procedures and the application of protective measures associated with various hazards.

The main aims of the module are to provide a firm foundation for work in Safety Engineering and to act a basis for more advanced studies of safety practices.

Students will be provided with a learning pack where core subjects are presented in sequenced lessons that include self assessment questions with solutions to aid developmental learning. Module assessment comprises a formative element and a summative element. The formative assessment comprises a series of self assessment questions and answers at the end of each lesson. Feedback is also given to the students through email or by telephone. The summative assessment involves a single in course assessment comprising several elements.


Fill in an Application Form

Contact Form
* indicates required field

Acceptable file types: doc,pdf,txt,gif,jpg,jpeg,png.
Maximum file size: 10mb.